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The equations of motion for a golf ball interacting with a hole on a putting surface are found. A
computer is used to predict the outcome of the ball’s encounter with the hole as a function of the
impact parameter and the initial velocity of the ball at the rim. If the ball does not skid or bounce
when it collides with the opposite rim, it is predicted that a uniform ball must travel at 1.626 m/s
or less to be captured; that the British ball is easier to sink than the slightly larger American ball;
that a ball with a larger moment of inertia is more difficult to sink; and that bouncing and skidding
(factors that vary from green to green) result in capture at greater speeds. Experimental studies

support these predictions.

I. INTRODUCTION

Putting is an important part of the game of golf; 40% to
45% of the strokes taken in professional play are putts.'?
In putting, the intention is to sink the ball in a hole whose
diameter? is 4.25 in. (0.1080 m). In modern play, there are
two balls in use; the American ball, with a diameter of 1.68
in. (0.0427 m), and the British ball, with a diameter of 1.62
in. (0.0411 m). (The American ball is always used in tour-
nament play.) Golf balls are not uniform in composition,
so their moments of inertia may differ from that of a uni-
form sphere.

In this paper, we study the encounter of a rolling golf ball
with a hole. We will consider two cases: (1) a ball directed
toward the center of the hole; and (2) a ball directed off-
center. Both cases involve computer models of the ball-
hole interaction: We have devised experimental tests of
some predictions of these computer models.

In developing our models, we make some assumptions
about the bouncing and skidding of the ball at the rim of the
hole, assumptions that are necessary because these features
of the ball’s motion vary in ways that are not predictable.
Therefore, the models developed here are not entirely real-
istic. In addition, a number of important things happen toa
putted golf ball before it ever encounters the hole;* how-
ever, we are not presenting a complete model of putting.
Nevertheless, our models show the basis for some of the
interesting things that happen to putts, and the experimen-
tal tests give results consistent with the models’ predic-
tions.
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We think that this study will interest those concerned
with the physics of sports, especially golf, and that it also
raises points that are accessible and interesting to students
of elementary and intermediate mechanics.

Technical studies of putting are few. Mahoney’ gives
brief analysis of a ball interacting with a trough. Cochran
and Stobbs include a chapter on putting in their admirable
book.? So does Daish.® Soley’s book' on putting statistics
includes the results of some experiments on the technical
aspects of putting. Resource letter’ PS-1 lists papers on
other aspects of golf.

I1. BALL DIRECTED TOWARD THE CENTER OF
THE HOLE

In the following discussion we refer to the American ball
unless we state otherwise. In addition, we assume that air
resistance and rolling friction are negligible.

A, Conditions for striking the opposite rim

A golfball, rolling without slipping, and directed toward
the center of the hole has just reached the rim of the hole.
Will it remain in contact with the rim, or will it immediate-
ly begin free fall? To remain in contact with the rim, the
ball’s center must follow a path with radius R, where R, is
the ball’s radius. If the initial speed is v,, then the centripe-
tal acceleration of the ball is v3/R,, directed downward.
Gravity is the only downward force acting on the ball, so
the ball loses contact with the surface if v3/R, >g, or
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Fig. 1. The ball reaches the rim of the hole (left) with an initial speed v,.. It
falls by a distance equal to its own radius R,, as it reaches the opposite rim
(right). R,, is the radius of the hole.

Vo> +/gR, , where g is the acceleration due to gravity. Let us
define 2 minimum speed:

v, =+/gR, =0.457 m/s. ‘ (N

If the initial speed v, is greater than v,,, the ball loses con-
tact with the surface when it first encounters the rim; if the
initial speed is smaller than v,, , the ball rolls for a while on
the rim before losing contact.

Suppose that a ball travels quickly enough at the rim to
enter free fall. Will the ball reach the opposite rim before
the hole captures it? Figure 1 shows a ball that reaches the
front rim of the hole with a speed v,; the ball has fallen by a
distance equal to its radius R, when it strikes the opposite

rim. The time required to fall a distance R, is /2R, /g, and
the horizontal distance traveled is 2R, — R,, where R,, is
the radius of the hole. So we can get the velocity v,.:

v, = (2R, — R,)\/g/2R, = 1.313 m/s. (2)

With an initial velocity smaller than v,, the ball will be
captured before it reaches the opposite rim. However, if the
ball’s initial velocity is greater than v., the ball strikes the
opposite rim of the hole, and we must consider the interac-
tion of the ball with the opposite rim before we can decide if
the ball will be captured. (For the British ball, we get
v,, = 0.449 m/s and v, = 1.348 m/s; this latter value im-
plies that the British ball is a little easier to sink than the
American ball. The main advantage of the British ball is
that it has less far to fall than its more ample American
cousin.)

B. Interaction with the opposite rim

When the ball collides with the opposite rim, its subse-
quent motion will depend on (1) how much the ball
bounces, that is, on the combined coefficient of restitution
of the ball and the surface; and (2) the nature of the fric-
tional forces exerted on the ball because its rotation causes
it to slide on the surface. Both the coefficient of restitution
and the sliding friction are characteristics that vary from
green to green. To keep our model general, we make the
following approximations: (1) the ball does not bounce
when it strikes the surface and (2) the impulse of the fric-
tional forces acts on the ball so that its subsequent motion is
without slippage. (The validity of these approximations is
discussed in Sec. II E below.)

Figure 2(a) shows a side view of a ball approaching the
opposite rim of a hole. The velocity of the ball has a radial
component v, and a tangential component v,,. The ball also
has an initial angular velocity w,. Because of the “no-
bounce” approximation, the radial velocity becomes zero

after the collision [see Fig. 2(b)]. At the moment of the

collision, the ball is acted on by an impulse F, At in the
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Fig. 2. Motion of ball (a) just before and (b) just after collision with the
opposite rim, using the no-bounce, no-skid approximations. Figure 2(b)
defines the angle ¢; other symbols are explained in the text.

tangential direction. This impulse changes the tangential
momentum and the angular momentum of the ball:

F At=m(v, —v,,),
and
Ft AtRb=I(a’o—a)f), (3)

where m is the mass of the ball, 7 is the moment of inertia,
and v, is the tangential velocity of the ball after the colli-
sion. The ‘“no-skid” approximation implies that
v, = R,0;. We combine these expressions to obtain the
tangential velocity of the ball after the collision:

vy = (v, + @, 0 /mR,)/(1 +1/mR3). (4)

C. What happens after the ball strikes the opposite rim

Once the ball reaches the opposite rim [Fig. 2(b) ], there
are several possibilities:

(1) v, might be negative, ensuring that the subsequent
motion is into the hole.

(2) v, might be positive but small, so that the ball starts
to roll away from the hole. This will be the case if
v;/R, <g cos ¢. Under these circumstances, the ball will
be captured if it does not have enough mechanical energy to
escape:

mv; /2 + Io/2 <mgR, (1 — cos ¢). (5)

(3) v, might be positive but large enough so that the ball
loses contact with the rim while moving away from the
hole. This will happen if v, /R, > g cos ¢. Then the ball will
again enter free fall, which will continue until (a) the ball
escapes; or (b) the ball collides again with the rim.

D. Computer model and predictions

A flow chart organizing the alternatives described above
appears in Fig. 3. Using it, we wrote a program® in BASIC to
predict the outcome of the ball’s interaction with the hole
as a function of the initial speed v,. We discuss here the
predictions of this computer model.

If the ball is a uniform sphere (/ = 2 mR } ), the program
predicts that a ball will be captured if its initial speed is
1.626 m/s or less. [This speed is close to the speed 1.636
m/s obtained by replacing 2R, — R, in Eq. (1) with 2R,,.
This corresponds to assuming that the center of the ball
travels ballistically to the opposite rim of the hole.’] The
ball will escape rolling (after striking the far rim twice) for
speeds up to 1.693 m/s, and it escapes flying for greater
speeds. The British ball will be captured at initial speeds up
to 1.653 m/s; the smaller size and smaller moment of iner-
tia make this ball easier to sink.
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BALL AT
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"MD STARTS | eeps
BALLISTIC TOLLING
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STRIKES ROLLS LoSES
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RIM CONTACT
RESUMES ESCAPES
BALLISTIC ROLLING CAPTURED
MOTION

ESCAPES
FLYING

CAPTURED

Fig. 3. Flow chart, showing the possibilities as a ball encounters with the
hole head-on.

However, golf balls are not uniform spheres. Table I
gives measured moments of inertia (divided by mR ;) for a
number of different balls. The wound balls have smaller
moments of inertia than the two-piece balls have.® (In a
race down an inclined plane, a wound ball usually defeats a
two-piece ball. ) It is likely that other golf balls in use may
have moments of inertia outside the range of those mea-
sured.

The computer model predicts that a higher moment of
inertia makes a ball harder to capture. It is easy to see why
this is so; the greater angular momentum of such a ball
results in a bigger kick out of the hole when it strikes the
opposite rim. We find that wound ball (1) with a moment
of inertia of 0.375 mR ;, will be captured at speeds up to
1.638 m/s, whereas the two-piece ball (4), with a moment
ofinertia 0.415 mR ;, will be captured at speeds up to 1.620

Table 1. Measured moments of inertia (divided by mR ) for different
(American) ball types. Values quoted are accurate to + 0.5%, mostly
because of imperfections in manufacture. Based on measurements by In-
ertia Dynamics, Inc.

Ball I/mR’
Wound(1) 0.375
Wound(2) 0.380
Two-piece(1) 0.391
Ideal sphere 0.400
Two-piece(2) 0.412
Two-piece(3) 0.413
Two-piece(4) 0.415
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Fig. 4. How the maximum capture speed depends on the coefficient of
restitution €.

m/s. That is, increasing the moment of inertia by about
10% decreases the maximum capture speed by about 1%.

E. Validity of the approximations

In the previous discussion, we assumed that the ball
neither bounces nor skids. We have modified the computer
program described above to incorporate the coefficient of
restitution of the ball colliding with the rim of the hole. (To
simplify matters, we assumed that the no-skid approxima-
tion remains valid.) If the ball approaches the far rim of the
hole with a velocity whose initial radial component is v,,,
then the radial component after the collision will be
v, = — €v,, where € is the coefficient of restitution. As
the coefficient of restitution increases, the computer model
predicts that the ball will be captured at greater velocities.
Figure 4 shows how the maximum capture speed depends
on the coefficient of restitution.

What range of values would be reasonable for the coeffi-
cient of restitution on a real green? If one drops a ball onto a
green, the ball typically bounces to about 10% of its initial
height. This would imply a coefficient of restitution around
0.3. However, a ball colliding with the narrow rim of a golf
hole does not undergo the same kind of collision as a ball
dropped onto a flat green.

How will the motion of the ball be affected if the ball
skids when it strikes the opposite rim? If the ball skids dur-
ing its initial impact with the opposite rim, then there will
be less of a kick imparted to the ball due to its rotation; so’
we expect that a ball that skids should be easier to capture.
(It is easy to show that a rotating ball dropped onto a flat
surface will reach the same final speed no matter what the
coefficient of sliding friction might be.® Cochran and
Stobbs? report that when a putted ball is set in motion on a
green it typically skids for the first 25% of the ball’s path;
Daish® reports similar results. However, it is difficult to say
how these results relate to the cause of a ball colliding with
a narrow rim.)
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We have also assumed that rolling friction and air resis-
tance are negligible; in actuality, these forces would tend to
oppose the motion of the ball, making it easier to sink.
However, we expect these forces are less significant while
the putt interacts with the hole than the forces associated
with bouncing and skidding.

II1. OFF-CENTER COLLISIONS

Figure 5 shows a ball encountering a hole off-center with
animpact parameter & (8 = Ois the case treated in Sec. I1).
In this section, we first find the conditions for the ball to
strike the opposite rim. (We did thisfor§ =0in Sec. IT A.)
We do this because the points involved may have pedagogi-
cal interest, and because the results will help us interpret
some of the predictions of the computer model. Next we
describe the physical and mathematical basis of the com-
puter model. After that, we present and discuss the results
of the computer model.

A, Conditions for striking the opposite rim

A golfball with impact parameter §, rolling without slip-
ping, has just reached the rim of the hole with a speed v,,.
Will it remain in contact with the rim, or will it immediate-
ly begin free fall? The component of the ball’s velocity to-
ward the center of the hole is v, cos 6,, where 6, is defined
in Fig. 5. Consequently the centripetal acceleration of the
ball (assuming it remains in contact with the rim) is
(v, cos 6,%/R,. However, this centripetal acceleration can
be no larger than g, so we can again define a minimum

velocity v,, = \/gR, /cos §,, which we may write in terms
of the impact parameter:

v,, =R,\JgR,/(R; — &). (6)
Figure 6 shows that the minimum velocity v,, increases as
the impact parameter § increases.

Suppose the ball travels quickly enough at the rim to
enter free fall. Will the ball reach the opposite rim before
the hole captures it? As in Sec. IT A, the ball takes a time
V2R, /g tofall by a distance equal to its radius R, . Figure 7
shows the situation if the ball just makes contact with the
opposite rim after falling by R,. The horizontal distance
traveled by the ball is

AB+BC=\R? -8 +,[(R, —R,)>—&.

again, we can define a velocity v,:

v, =/8/2R, [\R} =&+ (R, ~R,)"=&]. (7

Once
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Fig. 6. The velocities v,, and v, as functions of impact parameter 8. The
ball reaches the rim with initial speed v,. If v, <v,,, the ball remains in
contact with the rim. If v, > v,,,, the ball loses contact with the surface
when it first encounters the rim. If v, > v,, the ball strikes the opposite rim
before being captured.

So with an initial speed smaller than v, the ball will be
captured before it reaches the opposite rim, and if the ball’s
speed is greater than v_, the ball evidently strikes the oppo-
site rim before being captured. Notice that we get the ex-
pected expression for v, Eq. (2), when 8 = 0. Notice too
that v, is not defined when 6> R, — R,, which corre-
sponds to one edge of the ball being outside the edge of the
hole, making capture on the fly before striking the rim im-
possible. Figure 6 shows how the velocity v, depends on the
impact parameter.

B. The ball rolls on the rim
1. We set up a coordinate system

We define a coordinate system (R,8,¢) as shown in Figs.
8 and 9. R is the distance between the center of the ball and
the closest edge of the hole’s rim; ¢ is the angle between R
and the vertical, defined so that ¢ is positive when the cen-
ter of the ball is inside the lip of the hole; and g i the
azimuthal angle. The associated ynit vectors are (R,0,¢),
which form a right-handed set: RX 0 = ¢. These coordi-
nates may be related to the more usual cylindrical coordi-
nates (p,¢’,z) according to

(p,¢',2) = (R, — R sin $,0,R cos ¢). (8)

Fig. 7. The ball reaches the rim at point A. If the initial velocity of the ball
is v,, then the ball falls by a distance equal to its radius R, as it moves
horizontally at distance AB + BC.

Fig. 5. The ball encounters the hole. The radius of the ball is R,,, the radius
of the hole is R,,, the initial speed of the ball is v,,, the impact parameter is
8, and the initial azimuthal angle is 6,,.
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Fig. 8. Coordinates # and p defined: top view of hole.

We will use p in the following discussion where convenient.
This coordinate system is useful because the simple expres-
sion R = R, expresses the condition that the ball is in con-
tact with the rim. There_ is, however, some complexity,
since the unit vectors (R,0,¢) are not necessarily constant
in time as the ball moves.

The rotation of the ball requires three additional coordi-
nates (ag,Q¢,a,) denoting rotations about axes in the
(R,0,0) directions. The angular velocities associated with
these angles are (@g,w,,0,).

2. We find the kinetic energy in terms of these coordinates

Suppose that the ball is in contact with the rim of the
hole. Then its position is given by R = R R. (For the mo-
ment, we neglect the constraint R = R,,.) To calculate the
velocity, we take the derivative: So the velocity is

v=%§=kﬁ + pé® + R, 3%, 9)

Likewise, the angular velocny is
o= wRR+a)99+a)¢¢ (10)
This means that the ball’s kinetic energy is

T=m(R?>+p*0 + R?¢*) /2 + [0} + 0} + 03)/2.
(11)

3. We identify the forces acting on the ball

As the ball rolls on the rim, it is acted on by the following
forces: the force of gravity mg; a normal force N directed
from the surface through the center of the ball; and two
friction force components f; and f;, which oppose slippage
(the subscripts tell which way these forces point in our
coordinate system ). The ball is also acted on by a torque 7

Fig. 9. Coordinates R and ¢ defined: side view of hole.
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Fig. 10. The forces N, mg, f,, and f, acting on the ball.

which tends to oppose rotations about the R axis. The
forces mg, N, f;, and f, are shown in Fig. 10.

4. We use Lagrange’s equations

When frictional forces act on an object, Lagrange’s equa-
tions of motion take the form

4(omy T _
di\dqg) dg - °
where g is a generalized coordinate and Q, is the associated
generahzed force.'® There will be six such equations, since

we have six coordinates. Considering Fig. 10, we find the
generalized forces:

Qr =N —mgcos ¢,
Q, = Rf, + mgR sin ¢

(12)

Qs = (R, — Rsind)f, = pfy (13)
Qur = Tr>

Qoo = Rfy,

Qa¢ = — Rf,.

If the ball rolls on the rim without slipping, then
v=0XR and R=R,. In addition, we assume that
wg = 0. So we have four constraints:

wgr =0,

Wo = — ¢»

v, =pd/R,, (14)
and

R =R,.

Since we have six differential equations [Eqs. (12) and
(13)] and four constraints [Eqs (14)], we will end up
with two independent expressions. Since R can only be R,
the two 1ndependent expressions will give us ¢ and . First,
though, it is convenient to write the moment of inertia as
I=ma’R }, where a is the radius of gyration divided by
the ball’s radius (a? = % for an ideal sphere; in effect, Table
I tabulates a values for different balls). Then we get

é=(gsing —pb2cos¢)/[R,(*+ 1)], (15)

6= —[(a+2)/(®+1)]pd/p
= [(&® +2)/(a® + 1)]R,¢0 cos ¢/(R, — R, sin ¢).
(16)

These angular accelerations can be used to determine ¢,
6, ¢, and 6 at all times. The rotation of the ball can then be
determined using Egs. (14) above.

In addition, we obtain an expression for the normal
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force:
N=mgcos ¢ — mR, & + mpf?sin . (17)
As long as N> 0, the ball remains in contact with the rim.

C. The ball in ballistic motion

If the ball begins ballistic motion, then N = f, = f, = 0.
The rotational angular momentum of the ball will be con-
served. The motion of the ball will be governed by the fol-
lowing expressions:

p*0 = L = const, (18)
]é:_gcos¢+R¢2—L2sin¢/p3, (19)
R¢ =gsin ¢ — 2¢R — L? cos ¢/p’. (20)

We note that angular momentum is conserved during
ballistic motion. This is no surprise, but it is curious that
angular momentum is not conserved while the ball rolls on
the rim, since the hole’s circular shape reminds us of a
central potential. However, while the ball rolls on the rim,
the force f, acts to prevent slippage, so the ball does not
experience a central force.

The above equations can be used to determine R, 6, and
¢ at all times during ballistic motion. There are several
possibilities to watch for during ballistic motion:

(1) The ball might fall below the rim of the hole and be
captured: In terms of the coordinates, this means ¢ > 7/2.

(2) The ball might escape flying: In terms of the coordi-
nates, this happens when ¢ = 0, with ¢ <0. (Notice that
the ball cannot escape flying if it has just entered ballistic
motion for the first time, since in that case it either hits the
rim of the hole or is captured flying. However, it can escape
flying after it interacts with the rim. The interaction of the
ball with the rim is described below.)

(3) The ball might strike the rim: This happens when
R =R, and R <O.

Equatiohs (15) and (16) become pathological when
L = 0. This is the case of a head-on putt. The difficulty with
the equations is that 6 changes abruptly from O to 7 as the
ball passes the center of the hole. This case is easier to treat
in normal Cartesian coordinates.

D. How the ball collides with the rim

Once the ball ends its ballistic motion by colliding with
the rim, we have to determine the ensuing motion. We ap-
ply a no-bounce, no-skid approximation. We eliminate the
bounce by setting R = 0 when the ball collides. We elimi-
nate the skid by imagining that the ball receives an impulse
during the collision so that its motion immediately after-
ward obeys the condition v = @ XR.

Just before the collision with the rim, the ball has the
following angular velocities: (6,¢,,04,,04 ). (Actually,
the ball will in general also have the angular velocity wg,
but we will assume this does not affect the collision.) The
tangential velocity of the bal] (that is, the component of ifs
velocity perpendicular to R) is v, = R,$,$ + p0,0.
After the collision, the new angular velocities and tangen-
tial velocity will be (6,,0,04,,04) and v,

=R,¢, ¢ + p0,0.

At the instant of collision, we assume that_the ball is
acted on by an impulse (F, At)0 + (F, At)é. This im-
pulse changes the tangential momentum of the ball:

mp(6, — 6,) = (F, Ar),

mR, (¢, — ¢,) = (F, Ap). 21)
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Likewise, the impulse changes the angular momentum of
the ball:

Hwy, —wy,) =Rb(F¢ Ap), (22)
Hwy — w4 ) = — R, (F, Al). (23)

Eliminating the unknown impulse between these equations
and applying Eqs. (14), the no-skid condition, we get the
following conditions after the collision:

0, = (8, + &*R,w, /p)/ (1 + a?), (24)
¢, = (§, — @’R,0,,/p)/(1 + ). (25)

By the way, the previous discussion bypasses a tricky
point. The ball has undergone ballistic motion. When it left
the rim to enter ballistic motion, it had an angular velocity
with ¢ and 8 components. Later, just an instant before it
struck the rim after ballistic motion, it has the same angu-
lar velocity. However, because it has moved to a new posi-
tion, our coordinate system has moved arqund sq that the
angular velocity does not have the same ¢ and 8 compo-
nents at the new position. This matter is tedious, but since it
is simply an issue of describing a vector in a coordinate
system that has rotated, we will not discuss it here.

E. What happens to the ball

When the first ball encounters the rim of the hole, it will
either lose contact with the rim and enter ballistic motion,
or it will continue to roll on the rim. If the ball is rolling on
the rim, it will continue to do so until it escapes rolling or is
captured rolling, or until it loses contact with the rim. If the
ballis in ballistic motion, it will continue until it is captured
by the hole or until it strikes the rim again. When it strikes
the rim, the no-bounce, no-skid approximation is invoked.
Having struck the rim, the ball will either continue rolling
on the rim or lose contact with the rim. If it loses contact a
second time, it enters ballistic motion, which will be ter-
minated either by capture, escape flying, or striking the rim
again.

It is possible to predict the velocity and path of a ball
after it has escaped the hole, but we will not discuss this
here.

BALL
AT RIM
LOSES CONTACT - KEEPS
AND STARTS ROLLING
BALLISTIC ON RIM
MOTION
STRIKES
RIM
CAPTURED ESCAPES
:
LOSES CONTACT
AGAIN, RESUMES CAPTURED
BALLISTIC ROLLING
MOTION

Fig. 11. Flow chart, showing the possibilities as the ball encounters the
hole off-center.
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Fig. 12. Putting outcomes as a function of initial speed and the dimension-
less impact parameter §/R,,, based on the computer program. Balls below
the dashed line are captured; those above escape. CF = captured flying;
CR = captured rolling; EF = escaped flying; ER = escaped rolling. Ara-
bic numerals and the speeds v,, and v_ are explained in the text: See also
Fig. 6.

F, Computer model and predictions

A flow chart for the computer model is given in Fig. 11.
The computer program® was written in FORTRAN.

Figure 12 gives a “phase diagram” of the computer pre-
dictions of the possible outcomes as a function of the initial
velocity v, and the impact parameter 6. In this figure, CF
means that the ball is captured flying; CR means that it is
captured rolling; ER means that it escapes rolling; and EF
means that it escapes flying. The most important feature of
this figure is the dashed line: All putts below this line are
captured, and all putts above it escape. We see that capture
is less likely as the impact parameter § increases. Two other
features to notice in this figure are the lines labeled v,, and
v.. These velocities, discussed in detail in Secs. I A and
IIT A above (see Fig. 6), are verified by the computer mod-
el: Balls with v > v,, lose contact with the front rim as soon
as they reach it, and balls with v < v, are captured before
they reach the opposite rim. Thus CF1 represents balls that
roll on the front rim before they are captured flying; CF2
represents balls that lose contact with the surface as soon as
they reach the front rim and that are captured before strik-
ing the opposite rim of the hole; CF3 represents balls that
are captured flying after striking the opposite rim; and CF4
represents balls that lose contact with the surface when
they first encounter the front rim and that are then cap-
tured after striking the front rim a second time. CR1 repre-
sents balls that are captured rolling and that never lose
contact with the rim; CR2 denotes balls that are captured
rolling after undergoing ballistic motion. ER1 denotes
balls that escape rolling without losing contact with the
rim; ER2 shows those which escape rolling after striking
the opposite rim.

The interaction of the ball with the hole is analogous to
certain interactions in nuclear physics; just as one may con-
sider the capture cross section for subatomic particle im-
pinging on a nucleus, so too may one consider the cross
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Fig. 13. The effective radius of the hole as a function of initial ball speed.

section for capture of a golf ball by a-hole. However, the
nuclear cross section is the effective area of a nucleus,
whereas a golf hole should be discussed in terms of its effec-
tive radius, since an approaching ball is constrained to
move on the surface of the green.!' In these terms, one
could say that for a ball with a velocity over 1.626 m/s, the
effective radius of the hole is zero, since the ball is not cap-
tured.'? Figure 13 gives the effective radius of the hole as a
function of the ball’s initial velocity v,. As expected, the
hole “looks” smaller as the ball’s velocity increases; a ball
with a velocity of 1.23 m/s encounters a hole whose effec-
tive radius is half its actual radius. A reader who has fol-
lowed the arguments this far will have little trouble dis-
cerning which regions of Fig. 12 correspond to elastic and
inelastic scattering of the ball from the hole.

This computer model, like the model for a head-on putt,
predicts that the American ball is slightly harder to sink
than the British ball, and that a ball with a large moment of
inertia is slightly harder to sink than one with a smaller
moment of inertia.

IV. TESTING THE COMPUTER PREDICTIONS

We constructed an artificial golf hole to test the comput-
er results. A hole of the appropriate diameter was drilled in
a plywood board. The board was faced with a corklike ma-
terial 0.5 cm thick. This material reduced, but did not en-
tirely eliminate, the bouncing of the ball as it rolled on the
surface. Golf balls rolled down an inclined plane, onto the
surface, and through a pair of photogates (Pasco model
9206) before interacting with the hole. The photogates al-
lowed measurement of the ball’s speed. We measured the
impact parameter by observing how the rolling balls
marred a narrow ridge of powder (manufactured by John-
son and Johnson) in front of the hole. The balls did not
always follow the same path, even when released under
supposedly identical conditions; this may be due to the
dimpling of the balls.

This artificial hole has a coefficient of restitution around
0.3. For collisions with the rim, however, the value may be
smaller. (Care was taken to support the plywood firmly, to
prevent the board from recoiling and reducing the
bounce.)

Figure 14 presents results of the experimental test. The
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Fig. 14. Experimental test of the computer model. Ball capture (O) and
noncapture (@) as a function of the initial ball speed and impact param-
eter §. Balls below the solid line should sink, according to the computer
prediction; those above should escape.

solid line represents the computer prediction: Balls below
this line should sink, and those above should escape. We
note that some balls sink although their initial speeds and
impact parameters put them above this line. This is prob-
ably due to bouncing and skidding of the balls at the rim of
the hole. In addition, the balls may be slowing as they ap-
proach the hole so that the actual speed at the rim will be
slightly less than the speed the photogates measure.

We also extensively studied head-on putts (6 = 0) for
the balls with the smallest and largest moments of inertia
given in Table 1. These experiments support the qualitative
prediction that an increase in the moment of inertia makes
the ball harder to sink (assuming the speed remains the
same). We have not tested whether the British ball is easier
to sink than the American ball.
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